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Abstract

A phenomenological model for hardening—softening elasto-plasticity coupled with damage is presented. Specific
kinematic internal variables are used to describe the mechanical state of the system. These, in the hypothesis of in-
finitesimal changes of configuration, are partitioned in the sum of a reversible and an irreversible part. The constitutive
equations, developed in the framework of the Generalised Standard Material Model, are derived for reversible pro-
cesses from an internal energy functional, postulated as the sum of the deformation energy and of the hardening energy
both coupled with damage, while for irreversible phenomena from a dissipation functional.

Performing duality transformations, the conjugated potentials of the complementary elastic energy and of the
complementary dissipation are obtained. From the latter a generalised elastic domain in the extended space of stresses
and thermodynamic forces is derived. The model, which is completely formulated in the space of actual stresses, is
compared with other formulations based on the concept of effective stresses in the case of isotropic damage. It is
observed that such models are consistent only for particular choices of the damage coupling. Finally, the predictions of
the proposed model for some simple processes are analysed.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Detailed constitutive theories have been formulated in the literature to reproduce significant non-lin-
earity in the mechanical behaviour of many materials. Although micro-structural models exist to describe
specific phenomena such as plastic slips, dislocation evolution, micro-defect coalescence, fracture propa-
gation, void growth etc., the analysis of coupling effects involving several of these phenomena is based on
phenomenological theories, which, in spite of some simplifications, provide a detailed description of many
geometrically complex engineering problems.
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Nomenclature

State variables
Kinematic
strain tensor
hardening internal variable
damage internal variable
specific entropy
(&, a,w) vector of mechanical kinematic variables
ual static
stress tensor
hardening internal force
damage internal force
temperature
(a,7,¢) vector of mechanical static variables
reversible component of the generic kinematic variable
irreversible component of the generic kinematic variable
rate of the generic variable
deviator of the stress tensor
deviator of the elastic strain tensor
effective stress and thermodynamic force
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Energy symbols
e(&e, 0, e, Se) specific internal energy
(&, 0te, e, 8e) specific Helmoltz free energy
(&e, ¢, s.) deformation potential
(ote, e, Se) hardening potential
(e, e, se) effective deformation potential
(ote, e, 5¢) effective hardening potential
(€&, &p, Dp, $p) specific dissipation
(a,%,(,T) specific conjugated dissipation
i internal virtual power
specific internal heat production
heat flux
material density
dissipated heat power
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Constitutive symbols

E elasticity tensor

H hardening tensor

M, effective stresses operator

M, effective hardening forces operator

Ey, Gy initial Young and shear moduli

K(o,x,() generalised elastic domain

Q(w.) set of the admissible values of the damage variable w,
R set of non-positive real numbers
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RT set of non-negative real numbers

(r)  yield function
real exponent of isotropic damage law
real coupling damage parameter
plastic multiplier
penalty parameter

= T X0

Object of this contribution is the analysis of a fully coupled phenomenological theory of plasticity with
hardening and damage. Damage is phenomenologically understood as a degradation both of the elastic
stiffness of the material (and, eventually, of its micro-structure) and of its strength. However, as it will be
shown, the theory of damage can also include phenomena such as fracture evolution, as it has been recently
suggested (Paas et al., 1993). The proposed model follows the phenomenological approach because the
material behaviour is described through a suitable set of internal variables, whose relation to micro-
mechanical processes is not exactly defined. Particularly, a subset of internal variables is considered
responsible of the damage evolution. The nature of these variables is generally tensorial (Hansen and
Schreyer, 1994; Zhu and Cescotto, 1995), although they can be reduced to scalar quantities if only isotropic
damage is considered.

Coupling between damage and plasticity is usually introduced redefining the plastic relations for the so
called effective stresses (Kachanov, 1958; Cordebois and Sidoroff, 1982; Krajcinovic, 1984; Lemaitre and
Chaboche, 1985; Ju, 1989). Flow rules for the plastic strain rates are consequently obtained including the
damage variable as a parameter, which, in turn, is determined through a specific evolution law independent
of the plastic potential (Hansen and Schreyer, 1994; Simo and Ju, 1987; Klisinski and Mroz, 1988; Marotti
de Sciarra, 1997). It is then needed to solve a parametric optimisation problem, whose convergence
properties are strongly dependent on the form chosen for the two potentials. A different thermodynamical
model has been recently formulated by Armero and Oller (2000); this uses a partition of the strain in elastic,
plastic, plus damage components, and employs the damaged stiffness directly as damage internal variables.

In this paper a new phenomenological model for a class of elastic—plastic damaging materials, that
deviates from those mentioned above is presented. The main characteristics of the proposed model are
summarised in the following. The framework of the Generalised Standard Material Model (Germain, 1973;
Halphen and Nguyen, 1975) is adopted, so that the model is defined through the specification of two
functionals of the kinematic variables, ruling the reversible and irreversible phenomena respectively. A
general scheme is developed, based on duality. All internal variables are consistently decomposed in a
reversible and an irreversible component, the first being responsible for the stored internal energy, the
second generating the internal dissipation. The second principle of thermodynamics is satisfied a priori
thanks to the hypotheses introduced for the structure of the dissipation functional. Full coupling with
damage is allowed both in the free energy and in the dissipation. Applying duality transformations
(Rockafellar, 1970), conjugated potentials of the mechanical variables dual to the kinematic variables are
obtained, resulting in the generalised complementary elastic energy and in the complementary dissipation
functional. The latter one is of fundamental importance, since its differential yields the evolution laws for
the rate of internal variables. According to the choice of the dissipation functional, and therefore of the
generalised elastic domain, coupling between plasticity and damage can be easily modelled and various
kinds of behaviour, such as hardening—softening transition, cohesive fracture-like behaviour, etc., can be
recovered, with no need of introducing ad-hoc evolution laws.

Two major consequences of this approach are stressed. First, an unified format for the evolution laws of
any internal variable is obtained, and they all derive from a single potential of the driving forces. Secondly,
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the model implies the existence of a single elastic domain in the extended space of the actual stresses and of
the thermodynamic forces dual to the hardening and damage internal variables. A natural extension of
Drucker’s principle applies to the generalised elastic domain, so that the postulate of maximum dissipation
is fulfilled. Therefore satisfaction of the evolution laws is obtained solving a single optimisation problem,
which turns out to be a straightforward generalisation of the one used in perfect plasticity.

The main characteristics of the model are first introduced and discussed without specifying any par-
ticular form for the governing functionals nor for the internal variables. Subsequently, as an exemplifi-
cation, a very simple isotropic damage model is introduced similar to the one proposed by Lemaitre (1996)
and some peculiar features of this model are presented, underlying the differences with the traditional
damage models. It will be shown how the present proposal needs very few material constants, and that their
experimental determination is based on the response of the material to simple fundamental tests. This result
is due to the derivation of the coupled model from properly defined thermodynamic potentials, so that the
constitutive evolution laws are not postulated but derived as a consequence of energy balances. The paper is
concluded by an application to a structural problem.

As any damage/softening local model, also the proposed one suffers for the strain localisation problem,
due to the loss of ellipticity of the tangent operator. Some of the strategies that have been presented in the
literature to overcome this problem can be easily adapted to the proposed model, but the matter is beyond
the scopes and the limits of the present paper.

2. Constitutive model
2.1. State variables and ambient spaces

A simple material is considered and the constitutive relations are developed within the framework of the
Generalised Standard Material Model (Germain, 1973; Halphen and Nguyen, 1975). The assumption
of local state is kept valid, i.e. the equilibrium state of a material point is assumed independent of the state
of the neighbouring elements. The state of the system is phenomenologically described assigning a set of
internal variables and the related mechanisms for energy exchange, distinguishing the reversible phenomena
that modify the stored energy and the irreversible ones that cause energy dissipation.

The following kinematic variables and the associated dual mechanic variables, which are defined in the
adjoint spaces (denoted by a prime), are considered:

¢ € D macroscopic strain

g €D stress

o €1  hardening

x € I' hardening internal forces
w € C damage

{ e C’ damage driving forces

s € R entropy

T € R temperature

Besides the deformation ¢, two sets of internal variables are introduced, acting at the micro-structural
level: the variables o which describe the hardening mechanisms and the variables w which measure the
degradation of the material integrity and account for the decay of the elastic and hardening stiffness and of
the strength of the material. Although some physical interpretation is possible, no link of these variables to
any mechanism is attempted, leaving it to a specific implementation of the general model.

To each pair of conjugated variables a duality product is associated, which generates the following
bilinear form of the internal virtual power:

Pi=(0,€) + (1,8) + ({, @) +(T,3) (2)
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The last term in (2) represents the heat exchange while the other terms correspond to the mechanical power.
A superimposed dot denotes rates, and the scalar products in (2) are the appropriate ones to each pair.

When necessary the whole sets of mechanical dual variables will be denoted by the symbols:
n=(exw)

o 3)

T = (07 X C)

In the paper only linear kinematic relations are considered (infinitesimal deformation), so that each
kinematic variable is additively decomposed in a reversible and an irreversible component:
e=¢6+¢
=0+ o, =0
oo = (4)
0=w,+w,=0
S =S¢+ Sp
Since for any closed system the power of the internal variables o, » must be zero, their total value vanishes,
i.e. their elastic and plastic parts are opposite (Kluitenberg, 1962; Ziegler, 1977).
According to the Generalised Standard Material Model, the constitutive relations are fully defined
through the choice of the specific internal energy functional e and of the specific dissipation functional d,
which depend on the local values of the kinematic variables:

€= e(ge, Ole wease) d = d(épa d‘pv d’pa*.gp) (5)

2.2. Internal energy functional

The internal energy, dependent only on the reversible part of the kinematic variables, is postulated as the
sum of a deformation energy ¢ (., w.,s.) and of a hardening energy (o, we, s.) coupled with damage:
e(se, e, C()e,Se) = (ﬁ(ﬁe, wease) + lﬁ(“e, C()e,Se) + II’IQ(CUC) (6)

The last term in (6) accounts for the unilateral nature of damage, being “InQ” the convex indicator
function of the set Q of the possible values of the damage variable (InQ(w.) = 0 if w. € Q, InQ(w,) =
+oo if w, € 2). When o, reaches the boundary of @ the material element is fully damaged. The model thus
describes both the degradation of the elastic stiffness and of the hardening modulus.

From standard thermodynamic arguments, the constitutive relations for the dual static variables are
obtained as elements of the sub-differentials of e (see Appendix A for the definition of sub-differential):

ced, pCD
xE Wl
(€0, (p+y)CC
Ted.(p+y)ER

()

In the sequel, as isothermal processes are considered, the dependence on entropy or temperature will be
dropped.

In the context of the kinematic linear theory the deformation and the hardening potentials take the
quadratic forms (a dot denotes the scalar product between 2nd order tensors):

¢ = %E(we)ee e, E(0)=E,
1 (8)

Y= EH(we)aze coe H(0) = Hp
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so that for a virgin material, w. = 0 and the undamaged elastic and hardening moduli are recovered. The
potential ¢ is convex in &, but globally not convex. Furthermore, the function E(w.) can be assumed convex
in we.

The form (8) has been often used in mechanics, and is based on the idea of the “effective stress” &, first
proposed by Kachanov (1958). This is the stress that would be applied to an element of undamaged ma-
terial so that it presents the same strain or the same elastic energy as the damaged element subjected to the
current stress o.

Indeed, employing the principle of equivalent elastic energy introduced by Cordebois and Sidoroff
(1982), that states the equalities

P(e, ) = P(&,0) o)
lp(“ev we) = W(&ea 0)
and defining the effective deformation operator such that & = M, "¢, and & = M, " a, the expressions for
the damaged stiffness and hardening tensors are:

E(we) = M 'E;M; "

10
H(w.) = My 'HyM,; " (10
The constitutive equations (7) yield:
o =M;"EM; e,
. ’ (11)
¥ =M, HyM; " o
and in the effective spaces it holds:
6 = Myo = EgM; "¢, = Epé.
g 10 0Vl 0 (12)

2 = MZX = HOM{TOCe = HO&e

The operators M;, M, are in general fourth order tensor (Hansen and Schreyer, 1994).
In this paper the concept of effective stress is not used. In order to simplify the analysis, only the case of
isotropic damage is considered. The elastic potentials that constitute the internal energy are written as:

d)(‘gea we) = %E()Se : ge(l + we)” (13)

1
lp(“ea we) = EHOy(we)‘xe - e

Q={w] - 1< w. <0}

(14)

with n = 1. The function y in (14) introduces a decay of the hardening modulus H,. Different choices for it
are possible. In the paper the following expression is used:
) =p(l+w)" peR p>0 (15)
For p = 0 no coupling effect is present. Recall that from (4) it is:
(16)

We = —Wp

The function ¢ defined in Eq. (13) is convex in &, . for any n > 1 while is not globally convex as can be
easily checked taking for instance the convex combination of the points:

1
nm= (ghovd)e) N, = (285,0,5(1}6)
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for which it results, in the intermediate point ., = (1 — 0)n, + On,:

$(nc) = (1= 0)d(m) + 0¢(n,) VO €0,1]

Graphically this is evident from Fig. 1, that shows the elastic potential and its level sets in the space of the
variables ¢, w. in an uniaxial case. Similar properties are true for the potential y, that, however, can be
either convex or concave on o; in the latter case initial softening is obtained.

The generalised elastic relations, derived from definitions (13) and (14), become:

0= Epee(1 + we)"
% = Hooep(1 + )" (17)
(= gEose (1 + cue)'“1 —i—ngooce o (1 + we)"fl + 0, In Q(w,)
The sub-differential of the indicator function that appears in the expression of { in (17) is known to
coincide with the cone of the outward normals to the admissible domain Q (Rockafellar, 1970). More

specifically, since Q = {w.|w. € R, (1 + w.) € RT} being R~, R™ respectively the axes of the non-positive
and non-negative real numbers,

0, InQ(w.) =, =, (o €0InR (w) (€ dInR (14 w.)
that is
{20 0.0 {0.=0 (,<0 (1+w)=20 (,(1+w)=0
The inverse relations are, for p # 0:

Eylc

e - (18a)
1+n
[m(%‘l“'”},h’alx-xﬂ
Lpg-1
O = ptl0 X - (18b)
[m(%la'ﬂilf&lwz)]
n 1 1 O THn
R e aeron ] GRS AL (180

In the rest of the paper p has been set equal to 1 for simplicity.

-0.2

-0.4

-0.6

-0.8

(b) ' Ex

Fig. 1. Elastic potential ¢(¢., @) and its level sets in an uniaxial case n = 2.
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The complementary (Gibbs) free energy is obtained from (13) and (14) applying Legendre’s transfor-
mation:

ec(aa X () = {0 cEe Y e C cWe — d)(sea we) - l//(aea we) - IHQ} (19)
where the kinematic variables are related to the conjugated forces through the elastic relations (18a)—(18c).
A direct evaluation, substituting formulas (18a)—(18c¢) in (19), yields:
1
a(Esto- o+ LH g 7) "0 - C=es i 0> 4 (Eylo o+ iH )
%(Eo’lo-a—F%Ho’lx-x) ifC<§(Eo’lo-a+%Ho’lx-x) (20)

a,,=1j;n(g)ﬁ (=0

e(o,1,0) =

The threshold value of { corresponds to a non-damaged situation (w. = 0), as it can be found substi-
tuting in Eqgs. (18a)—(18c). Fig. 2 shows a section of the surface (20) with the {-axis for y = 0 and constant
uniaxial stress levels in the case n = 2. For increasing {, the slope of the diagram decreases from the initial
zero value.

complementary energy

0.1F
e e g
02, 04 0.6 0.8
~ T
-0.1} ~ Sy
— o0=0.5 \\ R
\\ e
-0.2+ o0 ~ SR
~
~
-0.3}|-—g=0.2 ~
~

Fig. 2. Complementary energy functional in an uniaxial stress state. Section with planes g, = const, n = 2.

Fig. 3. Complementary energy functional in an uniaxial stress state, n = 2.
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The plot of ¢° as a function of (g, ) in Fig. 3 evidences its non-convexity. For n = 1, n = 2, it is:

1 1/2
eﬁ(a,x,()=\/§<E016-0+}—7H01x-x> CI/Z—C n=1
3 1 173 @D
e‘f(o’x,é):E(EOIO..G_i_;HOIX,X) é2/3_€ n=2

2.3. The dissipation functional

The irreversible behaviour is ruled by the dissipation potential d, that has to comply with the second
principle of thermodynamics, stating the irreversibility of entropy production (Chaboche, 1999):

ps+div%—%>o (22)

where p is the material density, » the density of the internal heat production and ¢ the heat flux for unit
area. Introducing the first principle of thermodynamics for eliminating radiation r it is found:

gradT )

=0
T

. 1 . . . . 1 . . . .
ps + div %—T(é—G-S—X-O(—C-CO—FdIVq) :?<st—e+a-8+x~oc+C-w—q
(23)
Inequality (23) transforms into the Clausius—-Duhem inequality by means of the Helmoltz free energy
f =e— pTs, obtained from a Legendre transformation of the internal energy e, using the conjugate pair
(s, T):
gradT
. =0 24
where 7 is the heat power dissipated by the material element during the plastic-damage process.
Under the classical hypothesis that f is constant w.r.t. the plastic components (Kluitenberg, 1962;
Besseling and Van der Giessen, 1994), and observing that

y=0-é+y-a+{-a—(f+pTs)—¢q

. of . of . of . of . .. i .

ffage£e+aaeae+awewe+aTT7a~se+)(~oce+é~wefpsT (25)
the entropy production (24) becomes, using (4):

y:o-gp+x-ap+g-cbp—%gradr>o (26)

In the case the mechanical dissipation is not coupled with the thermal dissipation, the following inequalities
are separately satisfied:

T, =0-&+ o+, =0 f%~gradT>0 (27)

In the sequel, as isothermal processes will be considered, thermal dissipation will be neglected.
According to the Generalised Standard Material Model, the existence of a mechanical dissipation
functional of the irreversible strain rates is now postulated, with the following properties:

e d is convex, proper, lower semi continuous;
) _[d0)=0
® d :DxIxC—RU{+o0}: {d(ﬁp) >0 Vi, £0

e dis such that t € 3d(1,)
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Such a function automatically satisfies the reduced dissipation inequality (27) first part, as can be seen
applying the definition of sub-differential:

v € 0d(,) = {ele - (h, — 1,) < d(i,) — d0i,) Vi, | (29)
Taking 7, = 0 from (29) it follows
e dd(iy) <= -1, > d(i,) >0 (30)

If it is made the additional hypothesis that d is positively homogeneous, then from inequality (29),
choosing once 7, = 0, then i, = —0n,, 6 > 1, it is found that

T € od(n,) SN
d pos hom = d(ip) =71, (31)

Since 3d(0) = {t € D' x I' x C'|[t- i, < d(1,) Vn,}, it follows that all admissible internal forces t given by
(29) belong to the convex closed set 0d(0):

TE 6d(1’/p) cod0)=K v, (32)
This is demonstrated as follows:
TE ad(”p) =T (ﬁp - r’p) < d(ﬁp) - d(np) vﬁp =T ;’p < d(;’p) =T€ ad(o)

The set K is then the generalised elastic domain in the space of all conjugated thermodynamic forces (see
for a more accurate discussion Romano et al., 1993).
Since, by the definition (32) it is

K={t:7t-5,<d(n,), Vi,€DxIxC} (33)
it follows that the maximum dissipation principle holds:
d(ép, 0, ) = sup {o- &+ o+ - ap} (34)
(o,1.0)€K

The present model satisfies therefore Drucker’s stability postulate in the space of the extended thermo-
dynamic forces.

Eq. (34) implies that the dissipation functional is equal to the support function of the convex domain K
(see Appendix A):

d(n,) = suppK (35)

A standard theorem of convex analysis states than that the conjugated dissipation function is given
by:

d*(t) =sup{o - & + 1 o + (- &, —suppK} = InK (o, 1, () (36)

Mo
The conjugated potentials (35) and (36) satisfy Fenchel’s inequality (Rockafellar, 1970)
d(n,) +d(r)<t-9,
d(n,) + d°(t) = t- 0, <= 1€ 0d(y,) n, €dd(q)

the equality sign holding only for pairs of variable conjugated through the constitutive equations.
The flow rules for the rates of the irreversible strains are thus:

#, € 0InK(7) (38)
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Recalling that the sub-differential of the indicator function of the convex set K coincides with the cone of
the outward normals to the set K, Eq. (38) generalises the normality condition for all the irreversible ki-
nematic variables.

The presented model is therefore associative. An extended Drucker’s stability criterion holds in the form:

(T2—T1)'1:]p<0 V11,7 €K, Vl”p Gad‘:(l’l) (39)

In consideration of the equivalence (37) it is possible to characterise the irreversible behaviour of the
model either specifying the dissipation functional or its conjugate. The latter way is usually simpler, since it
is sufficient to define the elastic domain in the extended space of stresses, hardening forces and dual damage
variables, by means of a convex yield function, assumed henceforth positively homogeneous:

K ={(0,1,0) : g(0, 1, ) <0} (40)
The flow rules are then expressed as:
i, € A0.g 1€ 3R [g] (41)

The condition on the multiplier 2 means that it satisfies the Kuhn-Tucker conditions:
/g=0 4220 g<0 (42)

The consistency condition 4g = 0 must be added for structural analysis and this springs out naturally from
the rate formulation of the constitutive equation (32) in a way totally identical to the case of perfect
plasticity. The relevant developments can be found in Cuomo and Contrafatto (2000a).

More generally, the yield function is defined as

g=sup{g;} i=1,...,n (43)

and the admissible domain K = N,_; ,K; is the convex hull of the limit surfaces. As a consequence in corner
points more than one mechanism can be simultaneously active.

Remark 1. Thanks to its structure, the model can easily be extended to accommodate specific plastic-
damage material behaviours. This can be done for instance including more than one damage internal
variables, each one accounting for a different physical mechanism. As an example, such an approach has
been used to model the different nature of damage exhibited by concrete-like materials in the tension and in
the compression range (Cuomo and Contrafatto, 2000b). Furthermore, forms of the internal energy or of
the dissipation potential different from those used in the paper can be applied, subjected only to the ther-
modynamic restrictions (28). For instance, time-dependent (viscous) damage plasticity can be obtained if a
dissipation potential combination of positively homogeneous functions and of homogeneous functions of
degree n > 1 is used (Cuomo, submitted for publication). Following the developments described in the
quoted paper in place of (41) and (42) a Perzyna-type flow-rule is obtained,

M, = g 0:g (44)

where 4 is a real a viscosity parameter and g, = max{g,0}.

Multi-dissipation mechanisms can also be introduced, considering multi-surface elastic domains, as
suggested in (43).

Remark 2. The form (17) of the generalised elastic relation recovers the one used by many authors (Simo
and Ju, 1987; Ju, 1989). The coupled effect of damage on elastic stiffness and on the hardening moduli is
apparent. Additional degrees of freedom can be obtained if the exponent n of the damage law is assumed to
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be different for the elastic and the plastic moduli. This is often needed for fitting experimental data and
corresponds to the different evolution of damage in the texture of the material and in the mechanism of
nucleation of defects.

3. The admissible domain

In paragraph 2 it has been shown that the maximum dissipation principle (34) implies the existence of an
elastic domain K of the generalised stresses that can be described by means of the yield functional (43).
Different definitions are encountered in literature. Aim of this paragraph is to examine and compare some
of them with the present model.

In Lemaitre (1996), Lemaitre and Chaboche (1985), Borino et al. (1996) it is assumed that the maximum
dissipation principle is satisfied separately for the stresses and the damage variables

di(&,0,) = sup {o-& + - o} = suppKi(é,ap)
(0.2)€K;

. : : (45)
dr(wp) = §u};){( - p} = supp K (p)
CEKR
Condition (45) is not equivalent to (34), being
sup {o-éy+y-ap+ (-} < sup {o-& +y-dp} +sup{( d,} (46)
(0.1.0)€K (0.:0)eKy (eKr

As a consequence of (45) two different yield modes originate:
g1(o,1) <0 &(0)<0 (47)

as opposite to (40). The situation is graphically represented in Fig. 4 with reference to the uniaxial case.
Fig. 4 shows a sketch of the domain C = {7,|d(,) <1}, polar to K (Rockafellar, 1970; Romano et al.,
1992), in the sense that K = {z|(7,#,) <1 V3, € C}. In the case that two uncoupled dissipation potentials
are assumed as in (45) the domain C reduces to two segments on the coordinate axes, and similarly happens
to the admissible domains K, K,. Although they are convex in the relevant subspaces of D' x I’ x C’ their
intersection in not convex in the entire space of static variables.

According to our previous developments, adopting d = d; + d,, as on the RHS of (46), the domains C
and K with dashed borders are obtained. However, all the convex domains having their borders between
the solid and the dashed lines in Fig. 4, corresponding to different choices of the dissipation d, are ad-
missible. It is apparent that the proposed model permits a more accurate definition of the admissibility
condition, allowing interaction effects between the stresses and the conjugated damage variables and en-
suring convexity of the yield locus.

-1/0, 1/0,

£

. ! 1
0, —Op Ki o, OX

Fig. 4. Uniaxial domain C and K for Egs. (34) and (45).
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One more consequence of (45) is noticeable. The following flow rules correspond to the yield domains
(47):

(ép,0p) € /ﬂ“la(w)gl(m %) @p € 220:82(0) (48)

Two distinct Lagrangian multipliers are thus introduced. On the contrary, in the case of Eq. (41), only
one multiplier is needed, so that efficient algorithms can be used for overcoming the numerical difficulties at
corner points (Bertsekas, 1982).

In the model proposed in Section 2 the yield functional is a function of the actual thermodynamic
conjugated forces only. On the contrary, many authors account for damage coupling defining the yield
function in the effective stress space (Lemaitre and Chaboche, 1985; Hansen and Schreyer, 1994; Marotti de
Sciarra, 1997):

§=806,7) 6=Ms 7=My (49)
where M = M(w.) is the effective stress operator introduced in (9)—(12).

Usually the function g is assumed to be equal to the yield function of the undamaged material, so
that

8(6,%) =g(6,%) (50)
Thus, in this case, the yield function is not fully defined in the space of conjugated thermodynamic forces
and g(d, 7), which is convex in the effective force space, does not directly define the complementary dis-
sipation potential (36).
In order to obtain the domain K in the space of the conjugated internal forces, the kinematic internal
variable w, can be eliminated from (50) using the elastic constitutive relation:

g(6(we), A(we)) = &(0, 1, we(a, 2,0)) = &(0, 1, 0) (51)
It is stressed that the convexity of g in the effective stress space does not guarantee the convexity of g in
the space of actual internal forces.

For instance consider the expression of Mises criterion in a plane stress state without hardening in the
effective stress space:

g(é‘): \/3j2—0'0<0 jZZ

where a scalar form for M has been employed.
Introducing the expression (18c) for w, in the case y = 0, the following form of g is obtained:

-6 ¢ =6-

N =

e (52)

Q_g)% ( 02 — 2v0,0, + 02

—r
; 2 > (07 — 0.0, +03) — 09 (53)

o) =\ (
In Fig. 5 the surface (53) is represented in the space (o,, g, {) and in Fig. 6 its level sets for a fixed value of {
are shown using for the exponent n of the effective stress operator values between 1 and 2. Clearly, for
whatever n > 1 the domain K is not convex.

The admissible domain (53) in the uniaxial case is examined in Fig. 7 where the undamaged elastic path
for uniaxial stress is represented. Note that in the actual conjugated thermodynamic forces space it does not
correspond neither to the stress axis, nor to a straight line.

However, it is noted that the domain (53) is convex in the space of actual strains, recovering in this case
the Von Mises expression:

1
8(e) =2Gy|lel]| — o0 &, =& — gtr(se)l (54)
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0.015

Fig. 5. Limit surface of function (53) Ey = 100, 6y = 1, n = 1.5.

n=15 4

Fig. 6. Level sets of function (53) at { = 0.01, £, = 100, 0y = 1, n = 1.5, 2.
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Fig. 7. Section of function (53) with the plane o, = 0 (uniaxial case).
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It is also observed that, if an yield function of the type (50) is employed, the consistent flow rule (38)
becomes:

Ow,

ag

ép S /1 [aag + awega_:| = j'[aag + awegvggec((L X5 C)] (55)

Therefore an extra term depending on the complementary elastic energy e°(a, y, {) appears in the expression
of the plastic strain rate. It vanishes only if V2 ¢ = 0, that is if (s, , {) is uncoupled in (g, {), contrarily to

€
the constitutive hypothesis.
4. Some models of coupled plasticity and damage
4.1. The case of isotropic damage
In this paragraph some properties of the model proposed in Section 2 are investigated using a dissipation
mechanism produced by a single potential. In this context the model is characterised by a single plastic

failure mode. A Mises-type and a Drucker-Prager-type criterion with hardening and damage are consid-
ered:

1 2
g1(o,0,0) =34 — (ko + 1 — ) <0 J2:§0'/~O'/ ceR" k0:00+cngz (56)
2(0,7,0) = V3, +§11 —(ko+x—c0)<0 Iy =tr(o) p,c,kg €RT (57a)
=1 Lenly (&-1) el | eny? e
b 12 & (64D T Eri1T2E ¢ : i (378)

where y, and y, are the compressive and tensile resistances, Ej is the initial Young modulus and the pa-
rameter c rules the rate of damage. A damage fracture-type criterion is also considered, characterised by the
function g;:

() =0{-0<0 {er" (58)

The functions g; and g, are the classical expressions of the Mises and Drucker-Prager criteria with the
addition of two variables: the isotropic hardening variable y, that rules the homothetic expansion of the
plastic surface and the isotropic damage energy (, dual of the damage variable w, that describes the con-
traction of the domain when damage is active. The rate of the contraction is ruled by the constitutive
parameter c.

The function g; introduces a bound for the damage variable which is related to the fracture energy, as it
will be better explained in Section 4.2. A functional dependency on the stresses can also be introduced to
reproduce coupling phenomena of plasticity and fracture.

It is observed that the considered yield functions are all positively homogeneous, contrarily to the ex-
pressions obtained in the case an effective stress plastic criterion is used (see Eq. (53)). Dually, in opposition
to the case (54), the form of the yield criterions (56), (57a), (57b), (58) in the space of actual kinematic
variables is not positively homogeneous. For instance Mises criterion (56) provides:

(6o, e, e) = (2Go||&L|| + Hoore) (1 + )" + cg (Eote - g + Hotte - ) (1 + )" — ko (59)

In any case expressions (56), (57a), (58), (59) are convex in the spaces of actual stresses or strains.
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Fig. 8. Limit surface (56) and its level sets w, = const, Ey = 100, gy = 1, n = 2.

A representation of the limit surface obtained from Eq. (56) in the space of the internal forces is shown in
Fig. 8 for a plane stress state, together with its section with a plane { = const. These figures have to be
compared with Figs. 5 and 6.

The model is completed by the elastic relations Eq. (17). In addition to the usual elastic and hardening
constants, only two new material parameters are introduced, namely the damage exponent n and the
damage rate c.

4.2. Predictions of the model

The damage response of the model presented in Sections 2 and 4.1 is analysed considering some simple
uniaxial processes.

The pure damage response obtained employing the fracture-type criterion (58) is examined first. The
evolution of the damage variable w, in uniaxial extension is given by:

= 2
(1+0)e): (8—0> & = ;E— n>1 (60)

where ¢, is the limit uniaxial elastic strain. Eq. (60) shows that w. tends asymptotically to —1 (corre-
sponding to a fully damaged state). The stress follows from the elastic relation:

((%n ﬁ
og=E, pose) n>1 (61)

The stress—strain curves are shown in Fig. 9 for different values of the parameter n. For n = 1 the limit case
of instantaneous fracture is recovered. The loading—unloading behaviour is considered in Fig. 9b. It is
noteworthy that the energy corresponding to a fully damaged state (that can be interpreted as fracture
energy) is finite, in fact:

o * 1, n—=1_,
Gy = ode + ode = - Eoey + ——Eogy =
0 £ 2 2

n

2E08§ ={

Due to the presence of damage the application of this model to structural problems will cause strain
localisation with the consequent mesh-dependency of the numerical results. Some regularisation is required,
either in time or in space and several proposal can be found in literature. However, the aim of this paper is
to introduce the model and the possible strategies for coping with strain localisation are beyond the goal of
the present work.
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The coupled plastic-damage models are examined in the sequel. The first set of results refers to Mises
yield function g; of Eq. (56).
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Fig. 11. Uniaxial processes for n =1, 2, ¢ = 50, E = 100. Mises criterion.

Figs. 10 and 11 refer to a loading—unloading uniaxial tensile process. In Fig. 10 the casesn = 1 and n =2
are compared, for ¢ = 50, H = 10, oy = 1. The evolution of w, and of the elastic modulus E are also re-
ported. Increasing values of n determine stronger reduction of the yield stress. The plots of Fig. 11 have
been obtained for a very large value of H, thus comparable to the elastic stiffness, so that the tangent
stiffness after first yield does not degrade immediately, as it has been observed in some experimental tests on
concrete. Hardening then decreases fast as soon as damage develops, thanks to the coupling in the stored
energy functional.

The parameters ¢ and n particularly influence the degradation of the elastic modulus. The parameter n
determines the concavity of the curve E(w.), that can be obtained from experiments (Fig. 12).

Similar considerations can be made in the case of cyclic uniaxial tension—compression processes. Fig. 13
illustrate the complete degradation of the elastic modulus £ as w,, ranges between 0 and 1.

A second group of examples concerns the Drucker-Prager criterion (57a) and (57b). The influence of the
damage parameter ¢ for n = 2 and two different hardening moduli on the uniaxial compression curve is
presented in Figs. 14 and 15. It is evident that the model allows to simulate a continuous change from
hardening to softening as well as the reduction in the stiffness. The influence of the hardening modulus is
shown in Fig. 16.
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Fig. 13. Uniaxial cyclic process. E = 200, H = 200, oy = 2, n = 2, ¢ = 50. Mises criterion.

Fig. 17 concerns a panel subjected to shear. Three curves are reported. The middle one refers to Drucker-
Prager criterion (57a) and (57b) with y, = 2.0, £ = 10. The top and bottom curves report the prediction of
Mises criterion (56) with the same parameters and taking ¢y = y, for the former, o, = y; for the latter.

4.3. Multiaxial compression processes: comparison with experimental results

The predictions of the model examined in Section 4.2 are compared to experimental data obtained from
tests on confined concrete (Van Mier, 1984). For monotonic loading and for relatively small values of the
confinement pressure, the hypothesis of isotropic damage appears to be a reasonable approximation of the
actual damage evolution. In order to avoid the occurrence of localisation, only the data in the hardening
phase, before the peak, are used.

Let o, be the major compressive stress. The confinement stresses o, and ¢; are assumed always com-
pressive and proportional to the major stress: 6, = k01, 63 = kyo.
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The yield function (57a) and (57b) reduces to:

g= /A + R+ K~k —k — ki) + el — 1~ k<O (62)

pozi-! son il @=1) o | | on 32

y_|yc‘
11 2B, ¢ (E+D) OTEr1T2E, ¢ STy,

Introducing the flow rules (41) and the constitutive equations (17) the following expressions relating the
conjugated variables to the imposed stress are readily found:

np

2

1

¢ n AL+ Kk + 13 —2v(ky + ky + kky)] (1 + we)—(nﬂ) I

:TE‘O
We n
X:_H7(1+we)n wee[_lvo]

2
HC%C (1 + we)™"
¢ (63)

Note that in expressions (63) and (64) it has been used a different exponent n, for the damage law relative to
the hardening modulus H.

Inserting (63) in (62) and solving the equation g(o1, ki, k>, w.) = 0 for g, the limit value of the major
compressive stress g; as function of w, and of the confinement ratios k; and &, is obtained:

Eo(1 + we)""! 1 2Bcn 1 :
=20 T g pC— | — _(ky—D)+ (4 —=pC
o1 Ben 3ﬁ Eo(1+ we)""! (ko )+ 3 B
A:A(kl,kz):\/1+k12+k§—k1—k2—k1k2 ( )
64
B = B(kl,kz) =1 +kf +k22 — 2V(k1 +k2 + k]kg)
C=Clki,ko) =14k +k
2
D=D()=2H%(1+w.)"" —HZ(1 +w)"
2 ¢ c
The corresponding limit value of the elastic deformation is obtained through the elastic condition
im _ (1= vkl —vka) 4,
_ 65
! Eo(1 + w,)" 7 (65)
The relation ™ — '™, plotted in Figs. 18 and 19 for the uniaxial case, is obtained by eliminating o, from

expressions (64) and (65) for fixed ki, k,. It is observed that the limit elastic strain and the limit elastic stress
depend strongly on n and c. In Fig. 18 it has been assumed ¢ = 30 while # takes the values 1, 1.5, 2. Fig. 19
refers to n = 2, while ¢ takes the values 10, 50, 100. The values of » and ¢ influence the value of the elastic
strain for which the peak of the limit stress is reached.

Experimental data for a confined cyclic compression test on a concrete specimen is reported in Fig. 20.
(Van Mier, 1984), from which the experimental relation ¢i™ — ¢!i™ has been derived for comparison with the
prediction of the model given by Eq. (65). In this test the confinement pressures are given by the ratios
ki =1/10, ky, = 1/20.

The constitutive parameters n and ¢ have been obtained from the curve E(w,) — €™ shown in Fig. 21.
The parameter n, determined from the convexity of the curve, has been found equal to 2, while the pa-
rameter ¢ has been determined, in lack of more specific data, by curve fitting. A good agreement with the
experimental data can be obtained for ¢ = 70. The comparison of the predicted relation &i™ — ¢i™ with the
experimental one is shown in Fig. 21. For values of w, larger than 0.15 softening appears in the experi-
mental data (Fig. 22). The comparison between the envelope curve of the experimental test and the sim-
ulation of the model is shown in Fig. 23.
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Table 1
Comparison of experimental and numerical value of the peak stress and elastic strain for confined compressive tests on concrete,
c=70;n=2;n =35

k] kZ
0.05 0.1
Experimental Theoretical Experimental Theoretical
0.33 Opeak = 83 Opeak = 89.7 Opeak = 113 Opeak = 95.64
Epeak = 0.004 peak = 0.0041 Epeak = 0.0052 gpeak = 0.0043
0.1 Opeak = 75 Opeak = 77.6 Opeak = 75 Opeak = 80.9
&peak = 0.0036 gpeak = 0.0034 Epeak = 0.0037 &peak = 0.0036

The model parameters ¢, n, n, so determined for the test of Fig. 20 have been used for numerically
evaluating the peak value of the major stress and the corresponding elastic strain for different confinement
pressure ratios. The results, presented in Table 1, are in reasonable agreement with the experimental data
reported by Van Mier (1984).

5. Numerical algorithm

As it has been previously observed, the numerical implementation of the presented coupled plastic model
is a generalisation of the standard algorithm for elastoplasticity with internal variables. In the context of a
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displacement FE method, at each iteration, given the predicted total deformation ¢ + Aeg, it can be found the
algorithmic consistent tangent operator (Cuomo, submitted for publication)

@ (e) = sup[(n, 7) — ¢*(v) — d*() — (s 7)] (66)

where the vector ’13 collects the values of accumulated irreversible kinematic variables at the beginning of
the step.

It is examined the case of multiple constraints, where the yield surface is defined by (43). Here the
complementary dissipation functional is given by any of the following expressions:

d°=InK =In{N1,K;} = sup ... sup{higi () + - + L& (1)}
) >0

120 In =

=sup... s?p{ilgl (1) 4+ -+ 4 4u8u(7)} (67)

A1
where p is an arbitrary fixed positive (penalty) parameter and

Ai
g = max {g,—,—ﬂu €ER (68)

The second form of (67) derives from an augmented Lagrangian Regularisation (Bertsekas, 1982) that turns
the inequality constraint g; <0 into the equality constraint g, = 0 and has several advantages. First of
all, the Lagrangian multipliers are not limited in sign, moreover the gradients of the functions g; are
continuous in the neighbourhood of zero (Cuomo and Contrafatto, 2000a). This form is particularly useful
in the case of corner points. The optimal value of the constant penalty parameter y depends on the con-
vexity properties of the problem.

The stationarity conditions of (66) are the compatibility and admissibility conditions:

&—& — &y — MVe81 — = 4V,g
—Oe — Oy — MV, 81 — - — AV, g
—we — Wy, — MV g1 — - = 4Vg
r = 0 _gl - 0 (69)
I —8i |

where [ is the number of the constraints. The second and third rows of the residual vector (69) enforce the
equality between the elastic and plastic parts of the internal variables, given by their respective constitutive
equations (18a)—(18c) and (41).

The structure of the generic Newton’s step for solving Eq. (69) is:

[ Vg o V.8 || 8o

S+ Y A,D, V.8 - V.8 || &y
i=1l
vV.g - Vg || 8¢ |=r

V<T,§1 V,T(:g—l Vggl Vxlgl OA,

_Vigl Vigl Vzgl Vx,gl_ L&»,
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where
v..&a Via Vi
S, =Vie(n(r)) Di=|Vig Vig Vg
vVi,& Vi&g Vi

G,

vrgi — { VTgi if &i > _ZI

0 otherwise

0 if g >4

r g
V.8 { *,% otherwise

2o _ Vi ifgi> —4
Vel = { 0 otherwise

The procedure automatically guarantees the annihilation of the Lagrangian multipliers when a con-
straint switches from active to non-active. In the numerical implementation a reduced set of equations,
including only the predicted active constraints, can be used. Note that the tangent operator is symmetric
and it is a generalisation of the standard plasticity tangent operator, as opposite to the one found by other
models (e.g. Hansen and Schreyer, 1994).

A structural application has been performed. The model has been applied to the extension of a rect-
angular strip with a hollow slit in the centre, a quarter of which is illustrated in Fig. 24. The coupled Mises
criterion (56) has been used for the material with different values of the material constant c. Fig. 25 shows
the total reaction versus the imposed vertical displacement for three different values of the damage pa-
rameter ¢ (c = 0 is equivalent to absence of damage) in plane strain. The distribution of the equivalent
stress J, is shown in Fig. 26 in plane stress conditions at the three different levels of stretching indicated in
Fig. 27. Plastic deformations initially concentrate in the region near the tip of the slit and, as soon as
damage occurs, migrate along the centreline, unloading the previously plasticised region.

£ +
[ ]
I ey
-
1 -
“
i r=0.05
’ 7
0.8 0.2

Fig. 24. Slit problem. Geometry and load condition.
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Fig. 25. Slit problem. Plane strain. Structural response for different values of the damage parameter c.
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Fig. 26. Slit problem. Plane stress. Evolution of the plastic zone. Contour values of J,.
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Fig. 27. Slit problem. Plane stress. Monotonic load condition.

6. Conclusions

An internal variable model of plasticity coupled with damage has been formulated in the framework of
GSMM. It is based on the definition of the internal energy functional and of the dissipation potential,
satisfying a priori the reduced dissipation inequality.

Various damaging material behaviours have been modelled, as plastic-hardening or cohesive fracture-
like behaviour, depending on the choice of the dissipation functional, and therefore of the generalised
elastic domain.

The model is completely formulated in the space of actual stresses and conjugated thermodynamic
forces, avoiding the introduction of “effective’ variables. The admissible domain is defined by means of a
single potential. Consequently the evolution laws of any internal variable are obtained in a unified way.

A natural extension of Drucker’s principle applies to the generalised elastic domain, so that the postulate
of maximum dissipation is fulfilled. The satisfaction of the evolution laws is obtained solving a single
optimisation problem, which turns out to be a straightforward generalisation of the one used in perfect
plasticity. The model is associative and satisfies a generalised Drucker’s postulate.

A particularisation of the model to the case of isotropic damage has been analysed. Because the con-
stitutive evolution laws are derived as a consequence of energy balances, the damage coupling is based only
on two material constants, which rule the rate and the concavity of the decay of the elastic modulus. These
can be easily identified by means of usual experimental tests. It has been shown that the predictions of the
model can reasonably simulate the experimental evolution of either damage in elastic-plastic materials or
tests on confined concrete. Several mechanical behaviours have been modelled, both in monotonic and in
cyclic processes. With the aid of a structural problem it has been shown the effectiveness of the numerical
implementation of the model, that covers also the frequent case of multiple yield modes. The problem of
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strain localisation and mesh dependency, typical of damage models, has not been addressed in the paper,
this aspect being under development in the framework of the proposed formulation.

Appendix A. Special functions

X, X' adjoint linear vector spaces
.- . dot product between tensor
(-,-) internal product

| - || Euclidean norm

R =RU {4}

Sub-differential of a functional

VF:SCX —R 0f(x,y):S—E CX
0f (x,y) ={x €8 f(x,y) = f(x,p) = (¥, (x —x)), VxeS}
Conjugated function
Vi:SCX—R f°:8—R fX)=sup{(x,x)—f(x), VxeS}
Fenchel’s inequality
Vi:SCX—R Vf:8 =R f(x)+/()< K, x) ()
If (*) holds with the equality the elements x and x’ are conjugated and the following identities holds:
x€f(W) ¥ e () (x¥)=f(x)+f )
Indicator function of a set §

InK: X —R InK(x){jf)o i;g

Support function of a set K

supp K : X' — R supp K (') = sup{(¥,x),x € K}

Relation between indicator function and support function of a set S

[InK]*(x') = §25[<x’xl> —InK(x)] = ilellg[<x,x/>] = [suppK](x')
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