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Abstract

A phenomenological model for hardening–softening elasto-plasticity coupled with damage is presented. Specific

kinematic internal variables are used to describe the mechanical state of the system. These, in the hypothesis of in-

finitesimal changes of configuration, are partitioned in the sum of a reversible and an irreversible part. The constitutive

equations, developed in the framework of the Generalised Standard Material Model, are derived for reversible pro-

cesses from an internal energy functional, postulated as the sum of the deformation energy and of the hardening energy

both coupled with damage, while for irreversible phenomena from a dissipation functional.

Performing duality transformations, the conjugated potentials of the complementary elastic energy and of the

complementary dissipation are obtained. From the latter a generalised elastic domain in the extended space of stresses

and thermodynamic forces is derived. The model, which is completely formulated in the space of actual stresses, is

compared with other formulations based on the concept of effective stresses in the case of isotropic damage. It is

observed that such models are consistent only for particular choices of the damage coupling. Finally, the predictions of

the proposed model for some simple processes are analysed.

� 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Continuum damage mechanics; Coupled plasticity and damage; Actual stresses and strains

1. Introduction

Detailed constitutive theories have been formulated in the literature to reproduce significant non-lin-

earity in the mechanical behaviour of many materials. Although micro-structural models exist to describe

specific phenomena such as plastic slips, dislocation evolution, micro-defect coalescence, fracture propa-

gation, void growth etc., the analysis of coupling effects involving several of these phenomena is based on

phenomenological theories, which, in spite of some simplifications, provide a detailed description of many
geometrically complex engineering problems.
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Nomenclature

State variables

Kinematic

e strain tensor

a hardening internal variable

x damage internal variable

s specific entropy
g ¼ ðe; a;xÞ vector of mechanical kinematic variables

Dual static

r stress tensor

v hardening internal force

f damage internal force

T temperature

s ¼ ðr; v; fÞ vector of mechanical static variables

ð Þe reversible component of the generic kinematic variable
ð Þp irreversible component of the generic kinematic variable

ð Þ
:

rate of the generic variable

r0 deviator of the stress tensor

e0e deviator of the elastic strain tensor

r̂r, v̂v effective stress and thermodynamic force

Energy symbols

eðee; ae;xe; seÞ specific internal energy

f ðee; ae;xe; seÞ specific Helmoltz free energy

/ðee;xe; seÞ deformation potential

wðae;xe; seÞ hardening potential

/̂/ðee;xe; seÞ effective deformation potential

ŵwðae;xe; seÞ effective hardening potential

dð _eep; _aap; _xxp; _sspÞ specific dissipation
dcðr; v; f; T Þ specific conjugated dissipation

Pvi internal virtual power

r specific internal heat production

q heat flux

q material density

c dissipated heat power

Constitutive symbols

E elasticity tensor

H hardening tensor

M1 effective stresses operator

M2 effective hardening forces operator

E0, G0 initial Young and shear moduli

Kðr; v; fÞ generalised elastic domain
XðxeÞ set of the admissible values of the damage variable xe

R� set of non-positive real numbers

6242 L. Contrafatto, M. Cuomo / International Journal of Solids and Structures 39 (2002) 6241–6271



Object of this contribution is the analysis of a fully coupled phenomenological theory of plasticity with
hardening and damage. Damage is phenomenologically understood as a degradation both of the elastic

stiffness of the material (and, eventually, of its micro-structure) and of its strength. However, as it will be

shown, the theory of damage can also include phenomena such as fracture evolution, as it has been recently

suggested (Paas et al., 1993). The proposed model follows the phenomenological approach because the

material behaviour is described through a suitable set of internal variables, whose relation to micro-

mechanical processes is not exactly defined. Particularly, a subset of internal variables is considered

responsible of the damage evolution. The nature of these variables is generally tensorial (Hansen and

Schreyer, 1994; Zhu and Cescotto, 1995), although they can be reduced to scalar quantities if only isotropic
damage is considered.

Coupling between damage and plasticity is usually introduced redefining the plastic relations for the so

called effective stresses (Kachanov, 1958; Cordebois and Sidoroff, 1982; Krajcinovic, 1984; Lemaitre and

Chaboche, 1985; Ju, 1989). Flow rules for the plastic strain rates are consequently obtained including the

damage variable as a parameter, which, in turn, is determined through a specific evolution law independent

of the plastic potential (Hansen and Schreyer, 1994; Simo and Ju, 1987; Klisinski and Mr�ooz, 1988; Marotti

de Sciarra, 1997). It is then needed to solve a parametric optimisation problem, whose convergence

properties are strongly dependent on the form chosen for the two potentials. A different thermodynamical
model has been recently formulated by Armero and Oller (2000); this uses a partition of the strain in elastic,

plastic, plus damage components, and employs the damaged stiffness directly as damage internal variables.

In this paper a new phenomenological model for a class of elastic–plastic damaging materials, that

deviates from those mentioned above is presented. The main characteristics of the proposed model are

summarised in the following. The framework of the Generalised Standard Material Model (Germain, 1973;

Halphen and Nguyen, 1975) is adopted, so that the model is defined through the specification of two

functionals of the kinematic variables, ruling the reversible and irreversible phenomena respectively. A

general scheme is developed, based on duality. All internal variables are consistently decomposed in a
reversible and an irreversible component, the first being responsible for the stored internal energy, the

second generating the internal dissipation. The second principle of thermodynamics is satisfied a priori

thanks to the hypotheses introduced for the structure of the dissipation functional. Full coupling with

damage is allowed both in the free energy and in the dissipation. Applying duality transformations

(Rockafellar, 1970), conjugated potentials of the mechanical variables dual to the kinematic variables are

obtained, resulting in the generalised complementary elastic energy and in the complementary dissipation

functional. The latter one is of fundamental importance, since its differential yields the evolution laws for

the rate of internal variables. According to the choice of the dissipation functional, and therefore of the
generalised elastic domain, coupling between plasticity and damage can be easily modelled and various

kinds of behaviour, such as hardening–softening transition, cohesive fracture-like behaviour, etc., can be

recovered, with no need of introducing ad-hoc evolution laws.

Two major consequences of this approach are stressed. First, an unified format for the evolution laws of

any internal variable is obtained, and they all derive from a single potential of the driving forces. Secondly,

Rþ set of non-negative real numbers

gðsÞ yield function
n real exponent of isotropic damage law

p real coupling damage parameter

k plastic multiplier

l penalty parameter
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the model implies the existence of a single elastic domain in the extended space of the actual stresses and of

the thermodynamic forces dual to the hardening and damage internal variables. A natural extension of

Drucker�s principle applies to the generalised elastic domain, so that the postulate of maximum dissipation

is fulfilled. Therefore satisfaction of the evolution laws is obtained solving a single optimisation problem,
which turns out to be a straightforward generalisation of the one used in perfect plasticity.

The main characteristics of the model are first introduced and discussed without specifying any par-

ticular form for the governing functionals nor for the internal variables. Subsequently, as an exemplifi-

cation, a very simple isotropic damage model is introduced similar to the one proposed by Lemaitre (1996)

and some peculiar features of this model are presented, underlying the differences with the traditional

damage models. It will be shown how the present proposal needs very few material constants, and that their

experimental determination is based on the response of the material to simple fundamental tests. This result

is due to the derivation of the coupled model from properly defined thermodynamic potentials, so that the
constitutive evolution laws are not postulated but derived as a consequence of energy balances. The paper is

concluded by an application to a structural problem.

As any damage/softening local model, also the proposed one suffers for the strain localisation problem,

due to the loss of ellipticity of the tangent operator. Some of the strategies that have been presented in the

literature to overcome this problem can be easily adapted to the proposed model, but the matter is beyond

the scopes and the limits of the present paper.

2. Constitutive model

2.1. State variables and ambient spaces

A simple material is considered and the constitutive relations are developed within the framework of the

Generalised Standard Material Model (Germain, 1973; Halphen and Nguyen, 1975). The assumption

of local state is kept valid, i.e. the equilibrium state of a material point is assumed independent of the state

of the neighbouring elements. The state of the system is phenomenologically described assigning a set of
internal variables and the related mechanisms for energy exchange, distinguishing the reversible phenomena

that modify the stored energy and the irreversible ones that cause energy dissipation.

The following kinematic variables and the associated dual mechanic variables, which are defined in the

adjoint spaces (denoted by a prime), are considered:

e 2 D macroscopic strain

r 2 D0 stress

a 2 I hardening

v 2 I 0 hardening internal forces

x 2 C damage
f 2 C0 damage driving forces

s 2 R entropy

T 2 R temperature

ð1Þ

Besides the deformation e, two sets of internal variables are introduced, acting at the micro-structural

level: the variables a which describe the hardening mechanisms and the variables x which measure the
degradation of the material integrity and account for the decay of the elastic and hardening stiffness and of

the strength of the material. Although some physical interpretation is possible, no link of these variables to

any mechanism is attempted, leaving it to a specific implementation of the general model.

To each pair of conjugated variables a duality product is associated, which generates the following

bilinear form of the internal virtual power:

Pvi ¼ hr; _eei þ hv; _aai þ hf; _xxi þ hT ; _ssi ð2Þ
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The last term in (2) represents the heat exchange while the other terms correspond to the mechanical power.

A superimposed dot denotes rates, and the scalar products in (2) are the appropriate ones to each pair.

When necessary the whole sets of mechanical dual variables will be denoted by the symbols:

g ¼ ðe; a;xÞ
s ¼ ðr; v; fÞ

ð3Þ

In the paper only linear kinematic relations are considered (infinitesimal deformation), so that each

kinematic variable is additively decomposed in a reversible and an irreversible component:

e ¼ ee þ ep

a ¼ ae þ ap ¼ 0

x ¼ xe þ xp ¼ 0

s ¼ se þ sp

ð4Þ

Since for any closed system the power of the internal variables a, x must be zero, their total value vanishes,

i.e. their elastic and plastic parts are opposite (Kluitenberg, 1962; Ziegler, 1977).

According to the Generalised Standard Material Model, the constitutive relations are fully defined

through the choice of the specific internal energy functional e and of the specific dissipation functional d,

which depend on the local values of the kinematic variables:

e ¼ eðee; ae;xe; seÞ d ¼ dð _eep; _aap; _xxp; _sspÞ ð5Þ

2.2. Internal energy functional

The internal energy, dependent only on the reversible part of the kinematic variables, is postulated as the

sum of a deformation energy /ðee;xe; seÞ and of a hardening energy wðae;xe; seÞ coupled with damage:

eðee; ae;xe; seÞ ¼ /ðee;xe; seÞ þ wðae;xe; seÞ þ InXðxeÞ ð6Þ
The last term in (6) accounts for the unilateral nature of damage, being ‘‘InX’’ the convex indicator

function of the set X of the possible values of the damage variable (InXðxeÞ ¼ 0 if xe 2 X, InXðxeÞ ¼
þ1 if xe 62 X). When xe reaches the boundary of X the material element is fully damaged. The model thus

describes both the degradation of the elastic stiffness and of the hardening modulus.

From standard thermodynamic arguments, the constitutive relations for the dual static variables are

obtained as elements of the sub-differentials of e (see Appendix A for the definition of sub-differential):

r 2 oee
/ � D0

v 2 oae
w � I 0

f 2 oxe
ð/ þ wÞ � C0

T 2 oseð/ þ wÞ 2 R

ð7Þ

In the sequel, as isothermal processes are considered, the dependence on entropy or temperature will be

dropped.

In the context of the kinematic linear theory the deformation and the hardening potentials take the

quadratic forms (a dot denotes the scalar product between 2nd order tensors):

/ ¼ 1

2
EðxeÞee 
 ee Eð0Þ ¼ E0

w ¼ 1

2
HðxeÞae 
 ae Hð0Þ ¼ H0

ð8Þ
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so that for a virgin material, xe ¼ 0 and the undamaged elastic and hardening moduli are recovered. The

potential / is convex in ee but globally not convex. Furthermore, the function EðxeÞ can be assumed convex

in xe.

The form (8) has been often used in mechanics, and is based on the idea of the ‘‘effective stress’’ r̂r, first
proposed by Kachanov (1958). This is the stress that would be applied to an element of undamaged ma-

terial so that it presents the same strain or the same elastic energy as the damaged element subjected to the

current stress r.

Indeed, employing the principle of equivalent elastic energy introduced by Cordebois and Sidoroff

(1982), that states the equalities

/ðee;xeÞ ¼ /̂/ðêee; 0Þ
wðae;xeÞ ¼ ŵwðâae; 0Þ

ð9Þ

and defining the effective deformation operator such that êee ¼ M�T
1 ee and âae ¼ M�T

2 ae, the expressions for

the damaged stiffness and hardening tensors are:

EðxeÞ ¼ M�1
1 E0M�T

1

HðxeÞ ¼ M�1
2 H0M�T

2

ð10Þ

The constitutive equations (7) yield:

r ¼ M�1
1 E0M�T

1 ee

v ¼ M�1
2 H0M�T

2 ae

ð11Þ

and in the effective spaces it holds:

r̂r ¼ M1r ¼ E0M�T
1 ee ¼ E0êee

v̂v ¼ M2v ¼ H0M�T
2 ae ¼ H0âae

ð12Þ

The operators M1, M2 are in general fourth order tensor (Hansen and Schreyer, 1994).

In this paper the concept of effective stress is not used. In order to simplify the analysis, only the case of

isotropic damage is considered. The elastic potentials that constitute the internal energy are written as:

/ðee;xeÞ ¼
1

2
E0ee 
 eeð1 þ xeÞn ð13Þ

wðae;xeÞ ¼
1

2
H0yðxeÞae 
 ae

X ¼ fxej � 16xe 6 0g
ð14Þ

with nP 1. The function y in (14) introduces a decay of the hardening modulus H0. Different choices for it

are possible. In the paper the following expression is used:

yðxeÞ ¼ pð1 þ xeÞn p 2 R pP 0 ð15Þ
For p ¼ 0 no coupling effect is present. Recall that from (4) it is:

xe ¼ �xp ð16Þ
The function / defined in Eq. (13) is convex in ee, xe for any nP 1 while is not globally convex as can be

easily checked taking for instance the convex combination of the points:

g1 � ð�eee; 0; �xxeÞ g2 � 2�eee; 0;
1

2
�xxe

� �
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for which it results, in the intermediate point gc ¼ ð1 � hÞg1 þ hg2:

/ðgcÞP ð1 � hÞ/ðg1Þ þ h/ðg2Þ 8h 2 ½0; 1�
Graphically this is evident from Fig. 1, that shows the elastic potential and its level sets in the space of the

variables ee1
, xe in an uniaxial case. Similar properties are true for the potential w, that, however, can be

either convex or concave on ae; in the latter case initial softening is obtained.

The generalised elastic relations, derived from definitions (13) and (14), become:

r ¼ E0eeð1 þ xeÞn

v ¼ H0aepð1 þ xeÞn

f ¼ n
2
E0ee 
 eeð1 þ xeÞn�1 þ n

2
pH0ae 
 aeð1 þ xeÞn�1 þ oxe

InXðxeÞ
ð17Þ

The sub-differential of the indicator function that appears in the expression of f in (17) is known to

coincide with the cone of the outward normals to the admissible domain X (Rockafellar, 1970). More

specifically, since X ¼ fxejxe 2 R�; ð1 þ xeÞ 2 Rþg being R�, Rþ respectively the axes of the non-positive

and non-negative real numbers,

oxe
InXðxeÞ ¼ fa1

� fa2
fa1 2 o InR�ðxeÞ fa2 2 o InRþð1 þ xeÞ

that is

fa1
P 0 xe 6 0 fa1

xe ¼ 0 fa2
6 0 ð1 þ xeÞP 0 fa2

ð1 þ xeÞ ¼ 0

The inverse relations are, for p 6¼ 0:

ee ¼
E�1

0 r

n
2ðfþfa2�fa1Þ

E�1
0 r 
 r þ 1

p H
�1
0 v 
 v

� �h i n
1þn

ð18aÞ

ae ¼
1
p H

�1
0 v

n
2ðfþfa2�fa1Þ

E�1
0 r 
 r þ 1

p H
�1
0 v 
 v

� �h i n
1þn

ð18bÞ

1 þ xe ¼
n

2ðf þ fa2 � fa1Þ
E�1

0 r 
 r
��

þ 1

p
H�1

0 v 
 v
�� 1

1þn

ð18cÞ

In the rest of the paper p has been set equal to 1 for simplicity.

Fig. 1. Elastic potential /ðee;xeÞ and its level sets in an uniaxial case n ¼ 2.
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The complementary (Gibbs) free energy is obtained from (13) and (14) applying Legendre�s transfor-

mation:

ecðr; v; fÞ ¼ fr 
 ee þ v 
 ae þ f 
 xe � /ðee;xeÞ � wðae;xeÞ � InXg ð19Þ

where the kinematic variables are related to the conjugated forces through the elastic relations (18a)–(18c).

A direct evaluation, substituting formulas (18a)–(18c) in (19), yields:

ecðr; v; fÞ ¼
an E�1

0 r 
 r þ 1
p H

�1
0 v 
 v

� � 1
1þn

f
n

1þn � f ¼ ec
1 if fP n

2
E�1

0 r 
 r þ 1
p H

�1
0 v 
 v

� �
1
2
E�1

0 r 
 r þ 1
p H

�1
0 v 
 v

� �
if f < n

2
E�1

0 r 
 r þ 1
p H

�1
0 v 
 v

� �
8><
>:

an ¼
1 þ n
n

n
2

� � 1
1þn

fP 0

ð20Þ

The threshold value of f corresponds to a non-damaged situation ðxe ¼ 0Þ, as it can be found substi-

tuting in Eqs. (18a)–(18c). Fig. 2 shows a section of the surface (20) with the f-axis for v ¼ 0 and constant

uniaxial stress levels in the case n ¼ 2. For increasing f, the slope of the diagram decreases from the initial

zero value.

Fig. 2. Complementary energy functional in an uniaxial stress state. Section with planes r1 ¼ const, n ¼ 2.

Fig. 3. Complementary energy functional in an uniaxial stress state, n ¼ 2.
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The plot of ec as a function of ðr1; fÞ in Fig. 3 evidences its non-convexity. For n ¼ 1, n ¼ 2, it is:

ec
1ðr; v; fÞ ¼

ffiffiffi
2

p
E�1

0 r 
 r
�

þ 1

p
H�1

0 v 
 v
�1=2

f1=2 � f n ¼ 1

ec
1ðr; v; fÞ ¼

3

2
E�1

0 r 
 r
�

þ 1

p
H�1

0 v 
 v
�1=3

f2=3 � f n ¼ 2

ð21Þ

2.3. The dissipation functional

The irreversible behaviour is ruled by the dissipation potential d, that has to comply with the second

principle of thermodynamics, stating the irreversibility of entropy production (Chaboche, 1999):

q_ssþ div
q
T
� r
T

P 0 ð22Þ

where q is the material density, r the density of the internal heat production and q the heat flux for unit

area. Introducing the first principle of thermodynamics for eliminating radiation r it is found:

q_ssþ div
q
T
� 1

T
ð _ee� r 
 _ee � v 
 _aa � f 
 _xx þ divqÞ ¼ 1

T
qT _ss

�
� _eeþ r 
 _ee þ v 
 _aa þ f 
 _xx � q 
 gradT

T

�
P 0

ð23Þ
Inequality (23) transforms into the Clausius–Duhem inequality by means of the Helmoltz free energy

f ¼ e� qTs, obtained from a Legendre transformation of the internal energy e, using the conjugate pair

ðs; T Þ:

c ¼ r 
 _ee þ v 
 _aa þ f 
 _xx � ð _ff þ q _TT sÞ � q 
 gradT
T

P 0 ð24Þ

where c is the heat power dissipated by the material element during the plastic-damage process.

Under the classical hypothesis that f is constant w.r.t. the plastic components (Kluitenberg, 1962;

Besseling and Van der Giessen, 1994), and observing that

_ff ¼ of
oee

_eee þ
of
oae

_aae þ
of
oxe

_xxe þ
of
oT

_TT ¼ r 
 _eee þ v 
 _aae þ f 
 _xxe � qs _TT ð25Þ

the entropy production (24) becomes, using (4):

c ¼ r 
 _eep þ v 
 _aap þ f 
 _xxp �
q
T

 gradT P 0 ð26Þ

In the case the mechanical dissipation is not coupled with the thermal dissipation, the following inequalities

are separately satisfied:

s 
 _ggp ¼ r 
 _eep þ v 
 _aap þ f 
 _xxp P 0 � q
T

 gradT P 0 ð27Þ

In the sequel, as isothermal processes will be considered, thermal dissipation will be neglected.

According to the Generalised Standard Material Model, the existence of a mechanical dissipation

functional of the irreversible strain rates is now postulated, with the following properties:

• d is convex, proper, lower semi continuous;

• d : D� I � C ! R [ fþ1g :
dð0Þ ¼ 0

dð _ggpÞP 0 8 _ggp 6¼ 0

�
ð28Þ

• d is such that s 2 odð _ggpÞ
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Such a function automatically satisfies the reduced dissipation inequality (27) first part, as can be seen

applying the definition of sub-differential:

s 2 odð _ggpÞ ¼ sjs 
 ð�_gg_ggp

n
� _ggpÞ6 dð�_gg_ggpÞ � dð _ggpÞ 8�_gg_ggp

o
ð29Þ

Taking �_gg_ggp ¼ 0 from (29) it follows

s 2 odð _ggpÞ () s 
 _ggp P dð _ggpÞP 0 ð30Þ

If it is made the additional hypothesis that d is positively homogeneous, then from inequality (29),

choosing once �_gg_ggp ¼ h _ggp, then �_gg_ggp ¼ �h _ggp, h > 1, it is found that

s 2 odð _ggpÞ
d pos hom

�
) dð _ggpÞ ¼ s 
 _ggp ð31Þ

Since odð0Þ ¼ fs 2 D0 � I 0 � C0js 
 �_gg_ggp 6 dð�_gg_ggpÞ 8�_gg_ggpg, it follows that all admissible internal forces s given by

(29) belong to the convex closed set odð0Þ:
s 2 odð _ggpÞ � odð0Þ ¼ K 8 _ggp ð32Þ

This is demonstrated as follows:

s 2 odð _ggpÞ ) s 
 ð�_gg_ggp � _ggpÞ6 dð�_gg_ggpÞ � dð _ggpÞ 8�_gg_ggp ) s 
 �_gg_ggp 6 dð�_gg_ggpÞ ) s 2 odð0Þ

The set K is then the generalised elastic domain in the space of all conjugated thermodynamic forces (see

for a more accurate discussion Romano et al., 1993).

Since, by the definition (32) it is

K ¼ fs : s 
 _ggp 6 dð _ggpÞ; 8 _ggp 2 D� I � Cg ð33Þ

it follows that the maximum dissipation principle holds:

dð _eep; _aap; _xxpÞ ¼ sup
ðr;v;fÞ2K

fr 
 _eep þ v 
 _aap þ f 
 _xxpg ð34Þ

The present model satisfies therefore Drucker�s stability postulate in the space of the extended thermo-

dynamic forces.

Eq. (34) implies that the dissipation functional is equal to the support function of the convex domain K
(see Appendix A):

dð _ggpÞ ¼ suppK ð35Þ

A standard theorem of convex analysis states than that the conjugated dissipation function is given

by:

dcðsÞ ¼ sup
_ggp

fr 
 _eep þ v 
 _aap þ f 
 _xxp � suppKg ¼ InKðr; v; fÞ ð36Þ

The conjugated potentials (35) and (36) satisfy Fenchel�s inequality (Rockafellar, 1970)

dð _ggpÞ þ dcðsÞ6 s 
 _ggp

dð _ggpÞ þ dcðsÞ ¼ s 
 _ggp () s 2 odð _ggpÞ _ggp 2 odcðsÞ
ð37Þ

the equality sign holding only for pairs of variable conjugated through the constitutive equations.

The flow rules for the rates of the irreversible strains are thus:

_ggp 2 o InKðsÞ ð38Þ
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Recalling that the sub-differential of the indicator function of the convex set K coincides with the cone of

the outward normals to the set K, Eq. (38) generalises the normality condition for all the irreversible ki-

nematic variables.

The presented model is therefore associative. An extended Drucker�s stability criterion holds in the form:

ðs2 � s1Þ 
 _ggp 6 0 8s1; s2 2 K; 8 _ggp 2 odcðs1Þ ð39Þ

In consideration of the equivalence (37) it is possible to characterise the irreversible behaviour of the

model either specifying the dissipation functional or its conjugate. The latter way is usually simpler, since it

is sufficient to define the elastic domain in the extended space of stresses, hardening forces and dual damage

variables, by means of a convex yield function, assumed henceforth positively homogeneous:

K ¼ fðr; v; fÞ : gðr; v; fÞ6 0g ð40Þ

The flow rules are then expressed as:

_ggp 2 kosg k 2 oR�½g� ð41Þ

The condition on the multiplier k means that it satisfies the Kuhn-Tucker conditions:

kg ¼ 0 k P 0 g6 0 ð42Þ

The consistency condition k _gg ¼ 0 must be added for structural analysis and this springs out naturally from

the rate formulation of the constitutive equation (32) in a way totally identical to the case of perfect

plasticity. The relevant developments can be found in Cuomo and Contrafatto (2000a).
More generally, the yield function is defined as

g ¼ supfgig i ¼ 1; . . . ; n ð43Þ

and the admissible domain K ¼ \i¼1;nKi is the convex hull of the limit surfaces. As a consequence in corner

points more than one mechanism can be simultaneously active.

Remark 1. Thanks to its structure, the model can easily be extended to accommodate specific plastic-
damage material behaviours. This can be done for instance including more than one damage internal

variables, each one accounting for a different physical mechanism. As an example, such an approach has

been used to model the different nature of damage exhibited by concrete-like materials in the tension and in

the compression range (Cuomo and Contrafatto, 2000b). Furthermore, forms of the internal energy or of

the dissipation potential different from those used in the paper can be applied, subjected only to the ther-

modynamic restrictions (28). For instance, time-dependent (viscous) damage plasticity can be obtained if a

dissipation potential combination of positively homogeneous functions and of homogeneous functions of

degree n > 1 is used (Cuomo, submitted for publication). Following the developments described in the
quoted paper in place of (41) and (42) a Perzyna-type flow-rule is obtained,

_ggp ¼ lgþosg ð44Þ

where l is a real a viscosity parameter and gþ ¼ maxfg; 0g.

Multi-dissipation mechanisms can also be introduced, considering multi-surface elastic domains, as

suggested in (43).

Remark 2. The form (17) of the generalised elastic relation recovers the one used by many authors (Simo
and Ju, 1987; Ju, 1989). The coupled effect of damage on elastic stiffness and on the hardening moduli is

apparent. Additional degrees of freedom can be obtained if the exponent n of the damage law is assumed to
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be different for the elastic and the plastic moduli. This is often needed for fitting experimental data and

corresponds to the different evolution of damage in the texture of the material and in the mechanism of

nucleation of defects.

3. The admissible domain

In paragraph 2 it has been shown that the maximum dissipation principle (34) implies the existence of an

elastic domain K of the generalised stresses that can be described by means of the yield functional (43).

Different definitions are encountered in literature. Aim of this paragraph is to examine and compare some

of them with the present model.

In Lemaitre (1996), Lemaitre and Chaboche (1985), Borino et al. (1996) it is assumed that the maximum
dissipation principle is satisfied separately for the stresses and the damage variables

d1ð _eep; _aapÞ ¼ sup
ðr;vÞ2K1

fr 
 _eep þ v 
 _aapg ¼ suppK1ð _eep; _aapÞ

d2ð _xxpÞ ¼ sup
f2K2

ff 
 _xxpg ¼ suppK2ð _xxpÞ
ð45Þ

Condition (45) is not equivalent to (34), being

sup
ðr;v;fÞ2K

fr 
 _eep þ v 
 _aap þ f 
 _xxpg6 sup
ðr;vÞ2K1

fr 
 _eep þ v 
 _aapg þ sup
f2K2

ff 
 _xxpg ð46Þ

As a consequence of (45) two different yield modes originate:

g1ðr; vÞ6 0 g2ðfÞ6 0 ð47Þ

as opposite to (40). The situation is graphically represented in Fig. 4 with reference to the uniaxial case.

Fig. 4 shows a sketch of the domain C ¼ f _ggpjdð _ggpÞ6 1g, polar to K (Rockafellar, 1970; Romano et al.,

1992), in the sense that K ¼ fsjhs; _ggpi6 1 8 _ggp 2 Cg. In the case that two uncoupled dissipation potentials

are assumed as in (45) the domain C reduces to two segments on the coordinate axes, and similarly happens

to the admissible domains K1, K2. Although they are convex in the relevant subspaces of D0 � I 0 � C0 their

intersection in not convex in the entire space of static variables.

According to our previous developments, adopting d ¼ d1 þ d2, as on the RHS of (46), the domains C
and K with dashed borders are obtained. However, all the convex domains having their borders between

the solid and the dashed lines in Fig. 4, corresponding to different choices of the dissipation d, are ad-

missible. It is apparent that the proposed model permits a more accurate definition of the admissibility

condition, allowing interaction effects between the stresses and the conjugated damage variables and en-

suring convexity of the yield locus.

Fig. 4. Uniaxial domain C and K for Eqs. (34) and (45).
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One more consequence of (45) is noticeable. The following flow rules correspond to the yield domains

(47):

ð _eep; _aapÞ 2 k1oðr;vÞg1ðr; vÞ _xxp 2 k2ofg2ðfÞ ð48Þ

Two distinct Lagrangian multipliers are thus introduced. On the contrary, in the case of Eq. (41), only

one multiplier is needed, so that efficient algorithms can be used for overcoming the numerical difficulties at

corner points (Bertsekas, 1982).

In the model proposed in Section 2 the yield functional is a function of the actual thermodynamic

conjugated forces only. On the contrary, many authors account for damage coupling defining the yield

function in the effective stress space (Lemaitre and Chaboche, 1985; Hansen and Schreyer, 1994; Marotti de

Sciarra, 1997):

ĝg ¼ ĝgðr̂r; v̂vÞ r̂r ¼ Mr v̂v ¼ Mv ð49Þ
where M ¼ MðxeÞ is the effective stress operator introduced in (9)–(12).

Usually the function ĝg is assumed to be equal to the yield function of the undamaged material, so

that

ĝgðr̂r; v̂vÞ ¼ gðr̂r; v̂vÞ ð50Þ
Thus, in this case, the yield function is not fully defined in the space of conjugated thermodynamic forces

and gðr̂r; v̂vÞ, which is convex in the effective force space, does not directly define the complementary dis-

sipation potential (36).

In order to obtain the domain K in the space of the conjugated internal forces, the kinematic internal

variable xe can be eliminated from (50) using the elastic constitutive relation:

gðr̂rðxeÞ; v̂vðxeÞÞ ¼ ~ggðr; v;xeðr; v; fÞÞ ¼ ~ggðr; v; fÞ ð51Þ
It is stressed that the convexity of g in the effective stress space does not guarantee the convexity of ĝg in

the space of actual internal forces.

For instance consider the expression of Mises criterion in a plane stress state without hardening in the

effective stress space:

gðr̂rÞ ¼
ffiffiffiffiffiffiffi
3ĴJ2

q
� r0 6 0 ĴJ2 ¼

1

2
r̂r0 
 r̂r0 r̂r0 ¼ r̂r � 1

3
trðr̂rÞI r̂r ¼ Mr ¼ r

ð1 þ xeÞn
ð52Þ

where a scalar form for M has been employed.

Introducing the expression (18c) for xe in the case v ¼ 0, the following form of ĝg is obtained:

ĝgðr; fÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f
n

� � 2n
nþ1 r2

x � 2mrxry þ r2
y

E0

� �� 2n
nþ1

ðr2
x � rxry þ r2

yÞ

vuut � r0 ð53Þ

In Fig. 5 the surface (53) is represented in the space ðrx; ry ; fÞ and in Fig. 6 its level sets for a fixed value of f
are shown using for the exponent n of the effective stress operator values between 1 and 2. Clearly, for

whatever n > 1 the domain K is not convex.

The admissible domain (53) in the uniaxial case is examined in Fig. 7 where the undamaged elastic path

for uniaxial stress is represented. Note that in the actual conjugated thermodynamic forces space it does not

correspond neither to the stress axis, nor to a straight line.

However, it is noted that the domain (53) is convex in the space of actual strains, recovering in this case
the Von Mises expression:

~ggðeeÞ ¼ 2G0ke0ek � r0 e0e ¼ ee �
1

3
trðeeÞI ð54Þ

L. Contrafatto, M. Cuomo / International Journal of Solids and Structures 39 (2002) 6241–6271 6253



Fig. 5. Limit surface of function (53) E0 ¼ 100, r0 ¼ 1, n ¼ 1:5.

Fig. 6. Level sets of function (53) at f ¼ 0:01, E0 ¼ 100, r0 ¼ 1, n ¼ 1:5, 2.

Fig. 7. Section of function (53) with the plane ry ¼ 0 (uniaxial case).
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It is also observed that, if an yield function of the type (50) is employed, the consistent flow rule (38)

becomes:

_eep 2 k org
�

þ oxe
g
oxe

or

�
¼ k½org þ oxe

gr2
fre

cðr; v; fÞ� ð55Þ

Therefore an extra term depending on the complementary elastic energy ecðr; v; fÞ appears in the expression

of the plastic strain rate. It vanishes only if r2
fre

c ¼ 0, that is if ecðr; v; fÞ is uncoupled in ðr; fÞ, contrarily to

the constitutive hypothesis.

4. Some models of coupled plasticity and damage

4.1. The case of isotropic damage

In this paragraph some properties of the model proposed in Section 2 are investigated using a dissipation

mechanism produced by a single potential. In this context the model is characterised by a single plastic

failure mode. A Mises-type and a Drucker-Prager-type criterion with hardening and damage are consid-

ered:

g1ðr; v; fÞ ¼
ffiffiffiffiffiffiffi
3J2

p
� ðk0 þ v � cfÞ6 0 J2 ¼

1

2
r0 
 r0 c 2 Rþ k0 ¼ r0 þ c

n
2

r2
0

E0

ð56Þ

g2ðr; v; fÞ ¼
ffiffiffiffiffiffiffi
3J2

p
þ b

3
I1 � ðk0 þ v � cfÞ6 0 I1 ¼ trðrÞ b; c; k0 2 Rþ ð57aÞ

b ¼ 3
n � 1

n þ 1
þ 3

cn
2E

jycj
n

ðn2 � 1Þ
ðn þ 1Þ k0 ¼ 2

jycj
n þ 1

þ cn
2E

y2
c

n
n ¼ jycj

yt
ð57bÞ

where yc and yt are the compressive and tensile resistances, E0 is the initial Young modulus and the pa-

rameter c rules the rate of damage. A damage fracture-type criterion is also considered, characterised by the

function g3:

g3ðfÞ ¼ f � f0 6 0 f0 2 Rþ ð58Þ

The functions g1 and g2 are the classical expressions of the Mises and Drucker-Prager criteria with the

addition of two variables: the isotropic hardening variable v, that rules the homothetic expansion of the

plastic surface and the isotropic damage energy f, dual of the damage variable x, that describes the con-

traction of the domain when damage is active. The rate of the contraction is ruled by the constitutive
parameter c.

The function g3 introduces a bound for the damage variable which is related to the fracture energy, as it

will be better explained in Section 4.2. A functional dependency on the stresses can also be introduced to

reproduce coupling phenomena of plasticity and fracture.

It is observed that the considered yield functions are all positively homogeneous, contrarily to the ex-

pressions obtained in the case an effective stress plastic criterion is used (see Eq. (53)). Dually, in opposition

to the case (54), the form of the yield criterions (56), (57a), (57b), (58) in the space of actual kinematic

variables is not positively homogeneous. For instance Mises criterion (56) provides:

gðee; ae;xeÞ ¼ ð2G0ke0ek þ H0aeÞð1 þ xeÞn þ c
n
2
ðE0ee 
 ee þ H0ae 
 aeÞð1 þ xeÞn�1 � k0 ð59Þ

In any case expressions (56), (57a), (58), (59) are convex in the spaces of actual stresses or strains.
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A representation of the limit surface obtained from Eq. (56) in the space of the internal forces is shown in

Fig. 8 for a plane stress state, together with its section with a plane f ¼ const. These figures have to be

compared with Figs. 5 and 6.

The model is completed by the elastic relations Eq. (17). In addition to the usual elastic and hardening
constants, only two new material parameters are introduced, namely the damage exponent n and the

damage rate c.

4.2. Predictions of the model

The damage response of the model presented in Sections 2 and 4.1 is analysed considering some simple
uniaxial processes.

The pure damage response obtained employing the fracture-type criterion (58) is examined first. The

evolution of the damage variable xe in uniaxial extension is given by:

ð1 þ xeÞ ¼
e0

ee

� � 2
n�1

e0 ¼

ffiffiffiffiffiffiffiffiffi
2

n
f0

E0

s
n > 1 ð60Þ

where e0 is the limit uniaxial elastic strain. Eq. (60) shows that xe tends asymptotically to �1 (corre-

sponding to a fully damaged state). The stress follows from the elastic relation:

r ¼ E0

e2n
0

enþ1

� � 1
n�1

n > 1 ð61Þ

The stress–strain curves are shown in Fig. 9 for different values of the parameter n. For n ¼ 1 the limit case

of instantaneous fracture is recovered. The loading–unloading behaviour is considered in Fig. 9b. It is

noteworthy that the energy corresponding to a fully damaged state (that can be interpreted as fracture

energy) is finite, in fact:

Gf ¼
Z e0

0

rde þ
Z 1

e0

rde ¼ 1

2
E0e

2
0 þ

n� 1

2
E0e

2
0 ¼

n
2
E0e

2
0 ¼ f0

Due to the presence of damage the application of this model to structural problems will cause strain

localisation with the consequent mesh-dependency of the numerical results. Some regularisation is required,

either in time or in space and several proposal can be found in literature. However, the aim of this paper is
to introduce the model and the possible strategies for coping with strain localisation are beyond the goal of

the present work.

Fig. 8. Limit surface (56) and its level sets xe ¼ const, E0 ¼ 100, r0 ¼ 1, n ¼ 2.
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The coupled plastic-damage models are examined in the sequel. The first set of results refers to Mises

yield function g1 of Eq. (56).

Fig. 9. (a, b) Fracture-type criterion. Influence of parameter n. Loading–unloading process.

Fig. 10. Uniaxial processes for n ¼ 1, 2, c ¼ 50, E ¼ 100. Mises criterion.
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Figs. 10 and 11 refer to a loading–unloading uniaxial tensile process. In Fig. 10 the cases n ¼ 1 and n ¼ 2

are compared, for c ¼ 50, H ¼ 10, r0 ¼ 1. The evolution of xp and of the elastic modulus E are also re-

ported. Increasing values of n determine stronger reduction of the yield stress. The plots of Fig. 11 have

been obtained for a very large value of H , thus comparable to the elastic stiffness, so that the tangent
stiffness after first yield does not degrade immediately, as it has been observed in some experimental tests on

concrete. Hardening then decreases fast as soon as damage develops, thanks to the coupling in the stored

energy functional.

The parameters c and n particularly influence the degradation of the elastic modulus. The parameter n
determines the concavity of the curve EðxeÞ, that can be obtained from experiments (Fig. 12).

Similar considerations can be made in the case of cyclic uniaxial tension–compression processes. Fig. 13

illustrate the complete degradation of the elastic modulus E as xp ranges between 0 and 1.

A second group of examples concerns the Drucker-Prager criterion (57a) and (57b). The influence of the
damage parameter c for n ¼ 2 and two different hardening moduli on the uniaxial compression curve is

presented in Figs. 14 and 15. It is evident that the model allows to simulate a continuous change from

hardening to softening as well as the reduction in the stiffness. The influence of the hardening modulus is

shown in Fig. 16.

Fig. 11. Uniaxial processes for n ¼ 1, 2, c ¼ 50, E ¼ 100. Mises criterion.
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Fig. 17 concerns a panel subjected to shear. Three curves are reported. The middle one refers to Drucker-

Prager criterion (57a) and (57b) with yc ¼ 2:0, n ¼ 10. The top and bottom curves report the prediction of
Mises criterion (56) with the same parameters and taking r0 ¼ yc for the former, r0 ¼ yt for the latter.

4.3. Multiaxial compression processes: comparison with experimental results

The predictions of the model examined in Section 4.2 are compared to experimental data obtained from

tests on confined concrete (Van Mier, 1984). For monotonic loading and for relatively small values of the

confinement pressure, the hypothesis of isotropic damage appears to be a reasonable approximation of the

actual damage evolution. In order to avoid the occurrence of localisation, only the data in the hardening

phase, before the peak, are used.

Let r1 be the major compressive stress. The confinement stresses r2 and r3 are assumed always com-

pressive and proportional to the major stress: r2 ¼ k1r1, r3 ¼ k2r1.

Fig. 12. Influence of the parameters n and c on the degradation of the elastic modulus E. Mises Criterion.

Fig. 13. Uniaxial cyclic process. E ¼ 200, H ¼ 200, r0 ¼ 2, n ¼ 2, c ¼ 50. Mises criterion.
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Fig. 14. Drucker-Prager-type criterion. Uniaxial monotonic compressive process. Variable c. E ¼ 36000, m ¼ 0:3, H ¼ 0, n ¼ 2, n ¼ 10.

Fig. 15. Drucker-Prager-type criterion. Uniaxial cyclic compressive process. Variable c. E ¼ 36000, m ¼ 0:3, H ¼ 200, n ¼ 2, n ¼ 10.
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Fig. 16. Drucker-Prager-type criterion. Uniaxial cyclic compressive process. Variable H . E ¼ 36000, m ¼ 0:3, n ¼ 2, n ¼ 10.

Fig. 17. Panel subject to shear. Comparison between Drucker-Prager and Mises criterion.
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The yield function (57a) and (57b) reduces to:

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1ð1 þ k2
1 þ k2

2 � k1 � k2 � k1k2Þ
q

þ cf � v � k0 6 0 ð62Þ

b ¼ 3
n � 1

n þ 1
þ 3

cn
2E0

jycj
n

ðn2 � 1Þ
ðn þ 1Þ k0 ¼ 2

jycj
n þ 1

þ cn
2E0

y2
c

n
n ¼ jycj

yt

Introducing the flow rules (41) and the constitutive equations (17) the following expressions relating the

conjugated variables to the imposed stress are readily found:

f ¼ n
2E0

r2
1½1 þ k2

1 þ k2
2 � 2mðk1 þ k2 þ k1k2Þ�ð1 þ xeÞ�ðnþ1Þ þ n2

2
H

x2
e

c2
ð1 þ xeÞn2�1

v ¼ �H xe

c
ð1 þ xeÞn2 xe 2 ½�1; 0�

ð63Þ

Note that in expressions (63) and (64) it has been used a different exponent n2 for the damage law relative to
the hardening modulus H .

Inserting (63) in (62) and solving the equation gðr1; k1; k2;xeÞ ¼ 0 for r1, the limit value of the major

compressive stress r1 as function of xe and of the confinement ratios k1 and k2 is obtained:

r1 ¼
E0ð1 þ xeÞnþ1

Bcn
A

"
� 1

3
bC �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Bcn

E0ð1 þ xeÞnþ1
ðk0 � DÞ þ A� 1

3
bC

� �2
s #

A ¼ Aðk1; k2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ k2

1 þ k2
2 � k1 � k2 � k1k2

q
B ¼ Bðk1; k2Þ ¼ 1 þ k2

1 þ k2
2 � 2mðk1 þ k2 þ k1k2Þ

C ¼ Cðk1; k2Þ ¼ 1 þ k1 þ k2

D ¼ DðxeÞ ¼
n2

2
H

x2
e

c
ð1 þ xeÞn2�1 � H

xe

c
ð1 þ xeÞn2

ð64Þ

The corresponding limit value of the elastic deformation is obtained through the elastic condition

elim
1 ¼ ð1 � mk1 � mk2Þ

E0ð1 þ xeÞn
rlim

1 ð65Þ

The relation elim
1 � rlim

1 , plotted in Figs. 18 and 19 for the uniaxial case, is obtained by eliminating xe from

expressions (64) and (65) for fixed k1, k2. It is observed that the limit elastic strain and the limit elastic stress

depend strongly on n and c. In Fig. 18 it has been assumed c ¼ 30 while n takes the values 1, 1.5, 2. Fig. 19

refers to n ¼ 2, while c takes the values 10, 50, 100. The values of n and c influence the value of the elastic

strain for which the peak of the limit stress is reached.

Experimental data for a confined cyclic compression test on a concrete specimen is reported in Fig. 20.
(Van Mier, 1984), from which the experimental relation elim

1 � rlim
1 has been derived for comparison with the

prediction of the model given by Eq. (65). In this test the confinement pressures are given by the ratios

k1 ¼ 1=10, k2 ¼ 1=20.

The constitutive parameters n and c have been obtained from the curve EðxeÞ � elim
1 shown in Fig. 21.

The parameter n, determined from the convexity of the curve, has been found equal to 2, while the pa-

rameter c has been determined, in lack of more specific data, by curve fitting. A good agreement with the

experimental data can be obtained for c ¼ 70. The comparison of the predicted relation elim
1 � rlim

1 with the

experimental one is shown in Fig. 21. For values of xp larger than 0.15 softening appears in the experi-
mental data (Fig. 22). The comparison between the envelope curve of the experimental test and the sim-

ulation of the model is shown in Fig. 23.
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Fig. 18. Envelope of limit uniaxial elastic states for hardening isotropically damaged material. Constant c.

Fig. 19. Envelope of limit uniaxial elastic states for hardening isotropically damaged material. Constant n.

Fig. 20. Triaxial compressive stress–strain curve.
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Fig. 21. Experimental degradation of the elastic modulus and model prediction for the test of Fig. 20.

Fig. 22. Envelope of limit uniaxial elastic states. Comparison between experimental and theoretical data for the test of Fig. 20.
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The model parameters c, n, n2 so determined for the test of Fig. 20 have been used for numerically
evaluating the peak value of the major stress and the corresponding elastic strain for different confinement

pressure ratios. The results, presented in Table 1, are in reasonable agreement with the experimental data

reported by Van Mier (1984).

5. Numerical algorithm

As it has been previously observed, the numerical implementation of the presented coupled plastic model
is a generalisation of the standard algorithm for elastoplasticity with internal variables. In the context of a

Table 1

Comparison of experimental and numerical value of the peak stress and elastic strain for confined compressive tests on concrete,

c ¼ 70; n ¼ 2; n2 ¼ 3:5

k1 k2

0.05 0.1

Experimental Theoretical Experimental Theoretical

0.33 rpeak ¼ 83 rpeak ¼ 89:7 rpeak ¼ 113 rpeak ¼ 95:64

epeak ¼ 0:004 epeak ¼ 0:0041 epeak ¼ 0:0052 epeak ¼ 0:0043

0.1 rpeak ¼ 75 rpeak ¼ 77:6 rpeak ¼ 75 rpeak ¼ 80:9

epeak ¼ 0:0036 epeak ¼ 0:0034 epeak ¼ 0:0037 epeak ¼ 0:0036

Fig. 23. Confined compressive test. Theoretical and experimental r1–e1 curves.
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displacement FE method, at each iteration, given the predicted total deformation e þ De, it can be found the

algorithmic consistent tangent operator (Cuomo, submitted for publication)

UepðeÞ ¼ sup
s
½hg; si � ecðsÞ � dcðsÞ � hg0

p; si� ð66Þ

where the vector g0
p collects the values of accumulated irreversible kinematic variables at the beginning of

the step.

It is examined the case of multiple constraints, where the yield surface is defined by (43). Here the

complementary dissipation functional is given by any of the following expressions:

dc ¼ InK ¼ Inf\i¼1;nKig ¼ sup
k1 P 0

. . . sup
kn P 0

fk1g1ðsÞ þ 
 
 
 þ kngnðsÞg

¼ sup
k1

. . . sup
kn

fk1�gg1ðsÞ þ 
 
 
 þ kn�ggnðsÞg ð67Þ

where l is an arbitrary fixed positive (penalty) parameter and

�ggl ¼ max gi;
�

� ki
l

�
l 2 R ð68Þ

The second form of (67) derives from an augmented Lagrangian Regularisation (Bertsekas, 1982) that turns

the inequality constraint gi6 0 into the equality constraint �ggl ¼ 0 and has several advantages. First of

all, the Lagrangian multipliers are not limited in sign, moreover the gradients of the functions gi are

continuous in the neighbourhood of zero (Cuomo and Contrafatto, 2000a). This form is particularly useful
in the case of corner points. The optimal value of the constant penalty parameter l depends on the con-

vexity properties of the problem.

The stationarity conditions of (66) are the compatibility and admissibility conditions:

r ¼

e � ee � ep0
� k1rr�gg1 � 
 
 
 � klrr�ggl

�ae � ap0
� k1rv�gg1 � 
 
 
 � klrv�ggl

�xe � xp0
� k1rf�gg1 � 
 
 
 � klrf�ggl

��gg1

..

.

��ggl

2
666666664

3
777777775
¼ 0 ð69Þ

where l is the number of the constraints. The second and third rows of the residual vector (69) enforce the

equality between the elastic and plastic parts of the internal variables, given by their respective constitutive

equations (18a)–(18c) and (41).
The structure of the generic Newton�s step for solving Eq. (69) is:
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where

St ¼ r2
ggeðgðsÞÞ Di ¼

r2
r;r�ggl r2

r;v�ggl r2
r;f�ggl

r2
v;r�ggl r2

v;v�ggl r2
v;f�ggl

r2
f;r�ggl r2

f;v�ggl r2
f;f�ggl

2
64

3
75

rs�ggi ¼ rsgi if gi > � ki
l

0 otherwise

�

rki�ggi ¼
0 if gi > � ki

l

� 1
l otherwise

(

r2
ss�ggi ¼

r2
ssgi if gi > � ki

l
0 otherwise

�

The procedure automatically guarantees the annihilation of the Lagrangian multipliers when a con-

straint switches from active to non-active. In the numerical implementation a reduced set of equations,

including only the predicted active constraints, can be used. Note that the tangent operator is symmetric

and it is a generalisation of the standard plasticity tangent operator, as opposite to the one found by other
models (e.g. Hansen and Schreyer, 1994).

A structural application has been performed. The model has been applied to the extension of a rect-

angular strip with a hollow slit in the centre, a quarter of which is illustrated in Fig. 24. The coupled Mises

criterion (56) has been used for the material with different values of the material constant c. Fig. 25 shows

the total reaction versus the imposed vertical displacement for three different values of the damage pa-

rameter c (c ¼ 0 is equivalent to absence of damage) in plane strain. The distribution of the equivalent

stress J2 is shown in Fig. 26 in plane stress conditions at the three different levels of stretching indicated in

Fig. 27. Plastic deformations initially concentrate in the region near the tip of the slit and, as soon as
damage occurs, migrate along the centreline, unloading the previously plasticised region.

Fig. 24. Slit problem. Geometry and load condition.

L. Contrafatto, M. Cuomo / International Journal of Solids and Structures 39 (2002) 6241–6271 6267



Fig. 25. Slit problem. Plane strain. Structural response for different values of the damage parameter c.

Fig. 26. Slit problem. Plane stress. Evolution of the plastic zone. Contour values of J2.
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6. Conclusions

An internal variable model of plasticity coupled with damage has been formulated in the framework of

GSMM. It is based on the definition of the internal energy functional and of the dissipation potential,

satisfying a priori the reduced dissipation inequality.
Various damaging material behaviours have been modelled, as plastic-hardening or cohesive fracture-

like behaviour, depending on the choice of the dissipation functional, and therefore of the generalised

elastic domain.

The model is completely formulated in the space of actual stresses and conjugated thermodynamic

forces, avoiding the introduction of ‘‘effective’’ variables. The admissible domain is defined by means of a

single potential. Consequently the evolution laws of any internal variable are obtained in a unified way.

A natural extension of Drucker�s principle applies to the generalised elastic domain, so that the postulate

of maximum dissipation is fulfilled. The satisfaction of the evolution laws is obtained solving a single
optimisation problem, which turns out to be a straightforward generalisation of the one used in perfect

plasticity. The model is associative and satisfies a generalised Drucker�s postulate.

A particularisation of the model to the case of isotropic damage has been analysed. Because the con-

stitutive evolution laws are derived as a consequence of energy balances, the damage coupling is based only

on two material constants, which rule the rate and the concavity of the decay of the elastic modulus. These

can be easily identified by means of usual experimental tests. It has been shown that the predictions of the

model can reasonably simulate the experimental evolution of either damage in elastic-plastic materials or

tests on confined concrete. Several mechanical behaviours have been modelled, both in monotonic and in
cyclic processes. With the aid of a structural problem it has been shown the effectiveness of the numerical

implementation of the model, that covers also the frequent case of multiple yield modes. The problem of

Fig. 27. Slit problem. Plane stress. Monotonic load condition.
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strain localisation and mesh dependency, typical of damage models, has not been addressed in the paper,

this aspect being under development in the framework of the proposed formulation.

Appendix A. Special functions

X , X 0 adjoint linear vector spaces

: 
 : dot product between tensor

h
; 
i internal product
k 
 k Euclidean norm
�RR ¼ R [ fþ1g
Sub-differential of a functional

8f : S � X ! �RR oxf ðx; yÞ : S ! E0 � X 0

oxf ðx; yÞ ¼ fx0 2 S0 : f ð�xx; yÞ � f ðx; yÞP hx0; ð�xx� xÞi; 8�xx 2 Sg

Conjugated function

8f : S � X ! �RR f c : S0 ! �RR f cðx0Þ ¼ supfhx0; xi � f ðxÞ; 8x 2 Sg
Fenchel�s inequality

8f : S � X ! �RR 8f c : S0 ! �RR f ðxÞ þ f cðx0Þ6 hx0; xi ð�Þ
If (*) holds with the equality the elements x and x0 are conjugated and the following identities holds:

x 2 of 0ðx0Þ x0 2 of ðxÞ hx; x0i ¼ f ðxÞ þ f 0ðx0Þ
Indicator function of a set S

InK : X ! �RR InKðxÞ 0 x 2 K
þ1 x 62 K

�

Support function of a set K

supp K : X 0 ! �RR supp Kðx0Þ ¼ sup
x
fhx0; xi; x 2 Kg

Relation between indicator function and support function of a set S

½InK�cðx0Þ ¼ sup
x2X

½hx; x0i � InKðxÞ� ¼ sup
x2K

½hx; x0i� ¼ ½suppK�ðx0Þ
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